Mobile AI Compute Engine Documentation¶
Welcome to Mobile AI Compute Engine documentation.
The main documentation is organized into the following sections:
Introduction¶
Mobile AI Compute Engine (MACE) is a deep learning inference framework optimized for mobile heterogeneous computing platforms. The following figure shows the overall architecture.

Model format¶
MACE defines a customized model format which is similar to Caffe2. The MACE model can be converted from exported models by TensorFlow and Caffe. A YAML file is used to describe the model deployment details. In the next chapter, there is a detailed guide showing how to create this YAML file.
Model conversion¶
Currently, we provide model converters for TensorFlow and Caffe. And more frameworks will be supported in the future.
Model loading¶
The MACE model format contains two parts: the model graph definition and the model parameter tensors. The graph part utilizes Protocol Buffers for serialization. All the model parameter tensors are concatenated together into a continuous byte array, and we call this array tensor data in the following paragraphs. In the model graph, the tensor data offsets and lengths are recorded.
The models can be loaded in 3 ways:
- Both model graph and tensor data are dynamically loaded externally (by default, from file system, but the users are free to choose their own implementations, for example, with compression or encryption). This approach provides the most flexibility but the weakest model protection.
- Both model graph and tensor data are converted into C++ code and loaded by executing the compiled code. This approach provides the strongest model protection and simplest deployment.
- The model graph is converted into C++ code and constructed as the second approach, and the tensor data is loaded externally as the first approach.
Create a model deployment file¶
The first step to deploy you models is to create a YAML model deployment file.
One deployment file describes a case of model deployment, each file will generate one static library (if more than one ABIs specified, there will be one static library for each). The deployment file can contain one or more models, for example, a smart camera application may contain face recognition, object recognition, and voice recognition models, which can be defined in one deployment file),
Example¶
Here is an example deployment file used by an Android demo application.
TODO: change this example file to the demo deployment file (reuse the same file) and rename to a reasonable name.
# The name of library
library_name: mobilenet
target_abis: [arm64-v8a]
embed_model_data: 1
# The build mode for model(s).
# 'code' stand for transfer model(s) into cpp code, 'proto' for model(s) in protobuf file(s).
build_type: code
linkshared: 0
# One yaml config file can contain multi models' config message.
models:
mobilenet_v1: # model tag, which will be used in model loading and must be specific.
platform: tensorflow
# support local path, http:// and https://
model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v1/mobilenet-v1-1.0.pb
model_sha256_checksum: 71b10f540ece33c49a7b51f5d4095fc9bd78ce46ebf0300487b2ee23d71294e6
subgraphs:
- input_tensors: input
input_shapes: 1,224,224,3
output_tensors: MobilenetV1/Predictions/Reshape_1
output_shapes: 1,1001
runtime: cpu+gpu
limit_opencl_kernel_time: 0
nnlib_graph_mode: 0
obfuscate: 0
winograd: 0
mobilenet_v2:
platform: tensorflow
model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v2/mobilenet-v2-1.0.pb
model_sha256_checksum: 369f9a5f38f3c15b4311c1c84c032ce868da9f371b5f78c13d3ea3c537389bb4
subgraphs:
- input_tensors: input
input_shapes: 1,224,224,3
output_tensors: MobilenetV2/Predictions/Reshape_1
output_shapes: 1,1001
runtime: cpu+gpu
limit_opencl_kernel_time: 0
nnlib_graph_mode: 0
obfuscate: 0
winograd: 0
Configurations¶
library_name | library name. |
---|---|
target_abis | The target ABI to build, can be one or more of 'host', 'armeabi-v7a' or 'arm64-v8a'. |
target_socs | [optional] build for specified socs if you just want use the model for that socs. |
embed_model_data | Whether embedding model weights as the code, default to 0. |
build_type | model build type, can be ['proto', 'code']. 'proto' for converting model to ProtoBuf file and 'code' for converting model to c++ code. |
linkshared | [optional] Use dynamic linking for libmace library when setting to 1, or static linking when setting to 0, default to 0. |
model_name | model name. should be unique if there are multiple models. LIMIT: if build_type is code, model_name will used in c++ code so that model_name must fulfill c++ name specification. |
platform | The source framework, one of [tensorflow, caffe]. |
model_file_path | The path of the model file, can be local or remote. |
model_sha256_checksum | The SHA256 checksum of the model file. |
weight_file_path | [optional] The path of the model weights file, used by Caffe model. |
weight_sha256_checksum | [optional] The SHA256 checksum of the weight file, used by Caffe model. |
subgraphs | subgraphs key. ** DO NOT EDIT ** |
input_tensors | The input tensor names (tensorflow), top name of inputs' layer (caffe). one or more strings. |
output_tensors | The output tensor names (tensorflow), top name of outputs' layer (caffe). one or more strings. |
input_shapes | The shapes of the input tensors, in NHWC order. |
output_shapes | The shapes of the output tensors, in NHWC order. |
input_ranges | The numerical range of the input tensors, default [-1, 1]. It is only for test. |
validation_inputs_data | [optional] Specify Numpy validation inputs. When not provided, [-1, 1] random values will be used. |
runtime | The running device, one of [cpu, gpu, dsp, cpu_gpu]. cpu_gpu contains cpu and gpu model definition so you can run the model on both cpu and gpu. |
data_type | [optional] The data type used for specified runtime. [fp16_fp32, fp32_fp32] for gpu, default is fp16_fp32. [fp32] for cpu. [uint8] for dsp. |
limit_opencl_kernel_time | [optional] Whether splitting the OpenCL kernel within 1 ms to keep UI responsiveness, default to 0. |
nnlib_graph_mode | [optional] Control the DSP precision and performance, default to 0 usually works for most cases. |
obfuscate | [optional] Whether to obfuscate the model operator name, default to 0. |
winograd | [optional] Whether to enable Winograd convolution, will increase memory consumption. |
How to build¶
Supported Platforms¶
Platform | Explanation |
---|---|
TensorFlow | >= 1.6.0. |
Caffe | >= 1.0. |
Environment Requirement¶
MACE requires the following dependencies:
software | version | install command |
---|---|---|
bazel | >= 0.13.0 | bazel installation guide |
android-ndk | r15c/r16b | NDK installation guide or refers to the docker file |
adb | >= 1.0.32 | apt-get install android-tools-adb |
tensorflow | >= 1.6.0 | pip install -I tensorflow==1.6.0 (if you use tensorflow model) |
numpy | >= 1.14.0 | pip install -I numpy==1.14.0 |
scipy | >= 1.0.0 | pip install -I scipy==1.0.0 |
jinja2 | >= 2.10 | pip install -I jinja2==2.10 |
PyYaml | >= 3.12.0 | pip install -I pyyaml==3.12 |
sh | >= 1.12.14 | pip install -I sh==1.12.14 |
filelock | >= 3.0.0 | pip install -I filelock==3.0.0 |
docker (for caffe) | >= 17.09.0-ce | docker installation guide |
Note
export ANDROID_NDK_HOME=/path/to/ndk
to specify ANDROID_NDK_HOME
MACE provides Dockerfile with these dependencies installed, you can build the image from the Dockerfile,
cd docker
docker build -t xiaomimace/mace-dev
or pull the pre-built image from Docker Hub,
docker pull xiaomimace/mace-dev
and then run the container with the following command.
# Create container
# Set 'host' network to use ADB
docker run -it --rm --privileged -v /dev/bus/usb:/dev/bus/usb --net=host \
-v /local/path:/container/path xiaomimace/mace-dev /bin/bash
Usage¶
1. Pull MACE source code¶
git clone https://github.com/XiaoMi/mace.git
git fetch --all --tags --prune
# Checkout the latest tag (i.e. release version)
tag_name=`git describe --abbrev=0 --tags`
git checkout tags/${tag_name}
Note
It's highly recommanded to use a release version instead of master branch.
2. Model Preprocessing¶
- TensorFlow
TensorFlow provides Graph Transform Tool to improve inference efficiency by making various optimizations like Ops folding, redundant node removal etc. It's strongly recommended to make these optimizations before graph conversion step.
The following commands show the suggested graph transformations and optimizations for different runtimes,
# CPU/GPU:
./transform_graph \
--in_graph=tf_model.pb \
--out_graph=tf_model_opt.pb \
--inputs='input' \
--outputs='output' \
--transforms='strip_unused_nodes(type=float, shape="1,64,64,3")
strip_unused_nodes(type=float, shape="1,64,64,3")
remove_nodes(op=Identity, op=CheckNumerics)
fold_constants(ignore_errors=true)
flatten_atrous_conv
fold_batch_norms
fold_old_batch_norms
strip_unused_nodes
sort_by_execution_order'
# DSP:
./transform_graph \
--in_graph=tf_model.pb \
--out_graph=tf_model_opt.pb \
--inputs='input' \
--outputs='output' \
--transforms='strip_unused_nodes(type=float, shape="1,64,64,3")
strip_unused_nodes(type=float, shape="1,64,64,3")
remove_nodes(op=Identity, op=CheckNumerics)
fold_constants(ignore_errors=true)
fold_batch_norms
fold_old_batch_norms
backport_concatv2
quantize_weights(minimum_size=2)
quantize_nodes
strip_unused_nodes
sort_by_execution_order'
- Caffe
MACE converter only supports Caffe 1.0+, you need to upgrade your models with Caffe built-in tool when necessary,
# Upgrade prototxt
$CAFFE_ROOT/build/tools/upgrade_net_proto_text MODEL.prototxt MODEL.new.prototxt
# Upgrade caffemodel
$CAFFE_ROOT/build/tools/upgrade_net_proto_binary MODEL.caffemodel MODEL.new.caffemodel
4. Deployment¶
build
command will generate the static/shared library, model files and
header files and packaged as
build/${library_name}/libmace_${library_name}.tar.gz
.
- The generated
static
libraries are organized as follows,
build/
└── mobilenet-v2-gpu
├── include
│ └── mace
│ └── public
│ ├── mace.h
│ └── mace_runtime.h
├── libmace_mobilenet-v2-gpu.tar.gz
├── lib
│ ├── arm64-v8a
│ │ └── libmace_mobilenet-v2-gpu.MI6.msm8998.a
│ └── armeabi-v7a
│ └── libmace_mobilenet-v2-gpu.MI6.msm8998.a
├── model
│ ├── mobilenet_v2.data
│ └── mobilenet_v2.pb
└── opencl
├── arm64-v8a
│ └── mobilenet-v2-gpu_compiled_opencl_kernel.MI6.msm8998.bin
└── armeabi-v7a
└── mobilenet-v2-gpu_compiled_opencl_kernel.MI6.msm8998.bin
- The generated
shared
libraries are organized as follows,
build
└── mobilenet-v2-gpu
├── include
│ └── mace
│ └── public
│ ├── mace.h
│ └── mace_runtime.h
├── lib
│ ├── arm64-v8a
│ │ ├── libgnustl_shared.so
│ │ └── libmace.so
│ └── armeabi-v7a
│ ├── libgnustl_shared.so
│ └── libmace.so
├── model
│ ├── mobilenet_v2.data
│ └── mobilenet_v2.pb
└── opencl
├── arm64-v8a
│ └── mobilenet-v2-gpu_compiled_opencl_kernel.MI6.msm8998.bin
└── armeabi-v7a
└── mobilenet-v2-gpu_compiled_opencl_kernel.MI6.msm8998.bin
Note
- DSP runtime depends on
libhexagon_controller.so
. ${MODEL_TAG}.pb
file will be generated only whenbuild_type
isproto
.${library_name}_compiled_opencl_kernel.${device_name}.${soc}.bin
will be generated only whentarget_socs
andgpu
runtime are specified.- Generated shared library depends on
libgnustl_shared.so
.
Warning
${library_name}_compiled_opencl_kernel.${device_name}.${soc}.bin
depends
on the OpenCL version of the device, you should maintan the compatibility or
configure compiling cache store with ConfigKVStorageFactory
.
5. How to use the library in your project¶
Please refer to mace/examples/example.cc
for full usage. The following list the key steps.
// Include the headers
#include "mace/public/mace.h"
#include "mace/public/mace_runtime.h"
// If the build_type is code
#include "mace/public/mace_engine_factory.h"
// 0. Set pre-compiled OpenCL binary program file paths when available
if (device_type == DeviceType::GPU) {
mace::SetOpenCLBinaryPaths(opencl_binary_paths);
}
// 1. Set compiled OpenCL kernel cache, this is used to reduce the
// initialization time since the compiling is too slow. It's suggested
// to set this even when pre-compiled OpenCL program file is provided
// because the OpenCL version upgrade may also leads to kernel
// recompilations.
const std::string file_path ="path/to/opencl_cache_file";
std::shared_ptr<KVStorageFactory> storage_factory(
new FileStorageFactory(file_path));
ConfigKVStorageFactory(storage_factory);
// 2. Declare the device type (must be same with ``runtime`` in configuration file)
DeviceType device_type = DeviceType::GPU;
// 3. Define the input and output tensor names.
std::vector<std::string> input_names = {...};
std::vector<std::string> output_names = {...};
// 4. Create MaceEngine instance
std::shared_ptr<mace::MaceEngine> engine;
MaceStatus create_engine_status;
// Create Engine from compiled code
create_engine_status =
CreateMaceEngineFromCode(model_name.c_str(),
nullptr,
input_names,
output_names,
device_type,
&engine);
// Create Engine from model file
create_engine_status =
CreateMaceEngineFromProto(model_pb_data,
model_data_file.c_str(),
input_names,
output_names,
device_type,
&engine);
if (create_engine_status != MaceStatus::MACE_SUCCESS) {
// Report error
}
// 5. Create Input and Output tensor buffers
std::map<std::string, mace::MaceTensor> inputs;
std::map<std::string, mace::MaceTensor> outputs;
for (size_t i = 0; i < input_count; ++i) {
// Allocate input and output
int64_t input_size =
std::accumulate(input_shapes[i].begin(), input_shapes[i].end(), 1,
std::multiplies<int64_t>());
auto buffer_in = std::shared_ptr<float>(new float[input_size],
std::default_delete<float[]>());
// Load input here
// ...
inputs[input_names[i]] = mace::MaceTensor(input_shapes[i], buffer_in);
}
for (size_t i = 0; i < output_count; ++i) {
int64_t output_size =
std::accumulate(output_shapes[i].begin(), output_shapes[i].end(), 1,
std::multiplies<int64_t>());
auto buffer_out = std::shared_ptr<float>(new float[output_size],
std::default_delete<float[]>());
outputs[output_names[i]] = mace::MaceTensor(output_shapes[i], buffer_out);
}
// 6. Run the model
MaceStatus status = engine.Run(inputs, &outputs);
Operator lists¶
Operator | Android NN | Supported | Remark |
---|---|---|---|
AVERAGE_POOL_2D | Y | Y | |
BATCH_NORM | Y | Fusion with activation is supported | |
BATCH_TO_SPACE_ND | Y | Y | |
BIAS_ADD | Y | ||
CHANNEL_SHUFFLE | Y | ||
CONCATENATION | Y | Y | Only support channel axis concatenation |
CONV_2D | Y | Y | Fusion with BN and activation layer is supported |
DECONV_2D | N | Y | Only tensorflow model is supported |
DEPTHWISE_CONV_2D | Y | Y | Only multiplier = 1 is supported; Fusion is supported |
DEPTH_TO_SPACE | Y | Y | |
DEQUANTIZE | Y | Y | Model quantization will be supported later |
ELEMENT_WISE | Y | Y | ADD/MUL/DIV/MIN/MAX/NEG/ABS/SQR_DIFF/POW |
EMBEDDING_LOOKUP | Y | ||
FLOOR | Y | ||
FULLY_CONNECTED | Y | Y | |
GROUP_CONV_2D | Caffe model with group count = channel count is supported | ||
HASHTABLE_LOOKUP | Y | ||
L2_NORMALIZATION | Y | ||
L2_POOL_2D | Y | ||
LOCAL_RESPONSE_NORMALIZATION | Y | Y | |
LOGISTIC | Y | Y | |
LSH_PROJECTION | Y | ||
LSTM | Y | ||
MATMUL | Y | ||
MAX_POOL_2D | Y | Y | |
PAD | N | Y | |
PSROI_ALIGN | Y | ||
PRELU | Y | Only caffe model is supported | |
RELU | Y | Y | |
RELU1 | Y | Y | |
RELU6 | Y | Y | |
RELUX | Y | ||
RESHAPE | Y | Y | Limited support: only internal use of reshape in composed operations is supported |
RESIZE_BILINEAR | Y | Y | |
RNN | Y | ||
RPN_PROPOSAL_LAYER | Y | ||
SLICE | N | Y | Only support channel axis slice |
SOFTMAX | Y | Y | |
SPACE_TO_BATCH_ND | Y | Y | |
SPACE_TO_DEPTH | Y | Y | |
SVDF | Y | ||
TANH | Y | Y |
Contributing guide¶
License¶
The source file should contain a license header. See the existing files as the example.
Python coding style¶
Changes to Python code should conform to PEP8 Style Guide for Python Code.
You can use pycodestyle check the style.
C++ coding style¶
Changes to C++ code should conform to Google C++ Style Guide.
You can use cpplint to check the style and use clang-format to format the code:
clang-format -style="{BasedOnStyle: google, \
DerivePointerAlignment: false, \
PointerAlignment: Right, \
BinPackParameters: false}" $file
C++ logging guideline¶
VLOG is used for verbose logging, which is configured by environment variable
MACE_CPP_MIN_VLOG_LEVEL
. The guideline of VLOG level is as follows:
0. Ad hoc debug logging, should only be added in test or temporary ad hoc
debugging
1. Important network level Debug/Latency trace log (Op run should never
generate level 1 vlog)
2. Important op level Latency trace log
3. Unimportant Debug/Latency trace log
4. Verbose Debug/Latency trace log
C++ marco¶
C++ macros should start with MACE_
, except for most common ones like LOG
and VLOG
.
Adding a new Op¶
You can create a custom op if it is not supported yet.
To add a custom op, you need to follow these steps:
Define the Op class¶
Define the new Op class in mace/ops/my_custom_op.h
.
#ifndef MACE_OPS_MY_CUSTOM_OP_H_
#define MACE_OPS_MY_CUSTOM_OP_H_
#include "mace/core/operator.h"
#include "mace/kernels/my_custom_op.h"
namespace mace {
namespace ops {
template <DeviceType D, typename T>
class MyCustomOp : public Operator<D, T> {
public:
MyCustomOp(const OperatorDef &op_def, Workspace *ws)
: Operator<D, T>(op_def, ws),
functor_() {}
bool Run(StatsFuture *future) override {
const Tensor *input = this->Input(INPUT);
Tensor *output = this->Output(OUTPUT);
functor_(input, output, future);
return true;
}
protected:
OP_INPUT_TAGS(INPUT);
OP_OUTPUT_TAGS(OUTPUT);
private:
kernels::MyCustomOpFunctor<D, T> functor_;
};
} // namespace ops
} // namespace mace
#endif // MACE_OPS_MY_CUSTOM_OP_H_
Register the new Op¶
Define the Ops registering function in mace/ops/my_custom_op.cc
.
#include "mace/ops/my_custom_op.h"
namespace mace {
namespace ops {
void Register_My_Custom_Op(OperatorRegistry *op_registry) {
REGISTER_OPERATOR(op_registry, OpKeyBuilder("my_custom_op")
.Device(DeviceType::CPU)
.TypeConstraint<float>("T")
.Build(),
Custom_Op<DeviceType::CPU, float>);
REGISTER_OPERATOR(op_registry, OpKeyBuilder("my_custom_op")
.Device(DeviceType::OPENCL)
.TypeConstraint<float>("T")
.Build(),
Custom_Op<DeviceType::OPENCL, float>);
REGISTER_OPERATOR(op_registry, OpKeyBuilder("my_custom_op")
.Device(DeviceType::OPENCL)
.TypeConstraint<half>("T")
.Build(),
Custom_Op<DeviceType::OPENCL, half>);
}
} // namespace ops
} // namespace mace
And then register the new Op in mace/core/operator.cc
.
Implement the Op kernel code¶
You need to implement the CPU kernel in a mace/kernels/my_custom_op.h
and
optionally OpenCL kernel in mace/kernels/kernels/my_custom_op_opencl.cc
and
mace/kernels/kernels/cl/my_custom_op.cl
. You can also optimize the CPU
kernel with NEON.
Add test and benchmark¶
It's strongly recommended to add unit tests and micro benchmarks for your new Op. If you wish to contribute back, it's required.
Document the new Op¶
Finally, add an entry in operator table in the document.
Memory layout¶
CPU runtime memory layout¶
The CPU tensor buffer is organized in the following order:
Tensor type | Buffer |
---|---|
Intermediate input/output | NCHW |
Convolution Filter | OIHW |
Depthwise Convolution Filter | MIHW |
1-D Argument, length = W | W |
GPU runtime memory layout¶
GPU runtime implementation base on OpenCL, which uses 2D image with CL_RGBA channel order as the tensor storage. This requires OpenCL 1.2 and above.
The way of mapping the Tensor data to OpenCL 2D image (RGBA) is critical for kernel performance.
In CL_RGBA channel order, each 2D image pixel contains 4 data items. The following tables describe the mapping from different type of tensors to 2D RGBA Image.
Input/Output Tensor¶
The Input/Output Tensor is stored in NHWC format:
Tensor type | Buffer | Image size [width, height] | Explanation |
---|---|---|---|
Channel-Major Input/Output | NHWC | [W * (C+3)/4, N * H] | Default Input/Output format |
Height-Major Input/Output | NHWC | [W * C, N * (H+3)/4] | Winograd Convolution format |
Width-Major Input/Output | NHWC | [(W+3)/4 * C, N * H] | Winograd Convolution format |
Each Pixel of Image contains 4 elements. The below table list the coordination relation between Image and Buffer.
Tensor type | Pixel coordinate relationship | Explanation |
---|---|---|
Channel-Major Input/Output | P[i, j] = {E[n, h, w, c] | (n=j/H, h=j%H, w=i%W, c=[i/W * 4 + k])} | k=[0, 4) |
Height-Major Input/Output | P[i, j] = {E[n, h, w, c] | (n=j%N, h=[j/H*4 + k], w=i%W, c=i/W)} | k=[0, 4) |
Width-Major Input/Output | P[i, j] = {E[n, h, w, c] | (n=j/H, h=j%H, w=[i%W*4 + k], c=i/W)} | k=[0, 4) |
Filter Tensor¶
Tensor | Buffer | Image size [width, height] | Explanation |
---|---|---|---|
Convolution Filter | OIHW | [I, (O+3)/4 * W * H] | Convolution filter format,There is no difference compared to [H*W*I, (O+3)/4] |
Depthwise Convlution Filter | MIHW | [H * W * M, (I+3)/4] | Depthwise-Convolution filter format |
Each Pixel of Image contains 4 elements. The below table list the coordination relation between Image and Buffer.
Tensor type | Pixel coordinate relationship | Explanation |
---|---|---|
Convolution Filter | P[m, n] = {E[o, i, h, w] | (o=[n/HW*4+k], i=m, h=T/W, w=T%W)} | HW= H * W, T=n%HW, k=[0, 4) |
Depthwise Convlution Filter | P[m, n] = {E[0, i, h, w] | (i=[n*4+k], h=m/W, w=m%W)} | only support multiplier == 1, k=[0, 4) |
1-D Argument Tensor¶
Tensor type | Buffer | Image size [width, height] | Explanation |
---|---|---|---|
1-D Argument | W | [(W+3)/4, 1] | 1D argument format, e.g. Bias |
Each Pixel of Image contains 4 elements. The below table list the coordination relation between Image and Buffer.
Tensor type | Pixel coordinate relationship | Explanation |
---|---|---|
1-D Argument | P[i, 0] = {E[w] | w=i*4+k} | k=[0, 4) |
Frequently asked questions¶
Does the tensor data consume extra memory when compiled into C++ code?¶
When compiled into C++ code, the tensor data will be mmaped by the system loader. For the CPU runtime, the tensor data are used without memory copy. For the GPU and DSP runtime, the tensor data are used once during model initialization. The operating system is free to swap the pages out, however, it still consumes virtual memory addresses. So generally speaking, it takes no extra physical memory. If you are short of virtual memory space (this should be very rare), you can use the option to load the tensor data from data file (can be manually unmapped after initialization) instead of compiled code.
Why is the generated static library file size so huge?¶
The static library is simply an archive of a set of object files which are intermediate and contain many extra information, please check whether the final binary file size is as expected.
OpenCL allocator failed with CL_OUT_OF_RESOURCES¶
OpenCL runtime usually requires continuous virtual memory for its image buffer, the error will occur when the OpenCL driver can't find the continuous space due to high memory usage or fragmentation. Several solutions can be tried:
- Change the model by reducing its memory usage
- Split the Op with the biggest single memory buffer
- Change from armeabi-v7a to arm64-v8a to expand the virtual address space
- Reduce the memory consumption of other modules of the same process
Why is the performance worse than the official result for the same model?¶
The power options may not set properly, see mace/public/mace_runtime.h
for
details.
Why is the UI getting poor responsiveness when running model with GPU runtime?¶
Try to set limit_opencl_kernel_time
to 1
. If still not resolved, try to
modify the source code to use even smaller time intervals or changed to CPU
or DSP runtime.